The 6D pose estimation of an object from an image is a central problem in many domains of Computer Vision (CV) and researchers have struggled with this issue for several years. Traditional pose estimation methods (1) leveraged on geometrical approaches, exploiting manually annotated local features, or (2) relied on 2D object representations from different points of view and their comparisons with the original image. The two methods mentioned above are also known as Feature-based and Template-based, respectively. With the diffusion of Deep Learning (DL), new Learning-based strategies have been introduced to achieve the 6D pose estimation, improving traditional methods by involving Convolutional Neural Networks (CNN). This review analyzed techniques belonging to different research fields and classified them into three main categories: Template-based methods, Feature-based methods, and Learning-Based methods. In recent years, the research mainly focused on Learning-based methods, which allow the training of a neural network tailored for a specific task. For this reason, most of the analyzed methods belong to this category, and they have been in turn classified into three sub-categories: Bounding box prediction and Perspective-n-Point (PnP) algorithm-based methods, Classification-based methods, and Regression-based methods. This review aims to provide a general overview of the latest 6D pose recovery methods to underline the pros and cons and highlight the best-performing techniques for each group. The main goal is to supply the readers with helpful guidelines for the implementation of performing applications even under challenging circumstances such as auto-occlusions, symmetries, occlusions between multiple objects, and bad lighting conditions.
6D object position estimation from 2D images: a literature reviewMarullo, G;Tanzi, L;Piazzolla, P;Vezzetti, E2023-01-01AbstractThe 6D pose estimation of an object from an image is a central problem in many domains of Computer Vision (CV) and researchers have struggled with this issue for several years. Traditional pose estimation methods (1) leveraged on geometrical approaches, exploiting manually annotated local features, or (2) relied on 2D object representations from different points of view and their comparisons with the original image. The two methods mentioned above are also known as Feature-based and Template-based, respectively. With the diffusion of Deep Learning (DL), new Learning-based strategies have been introduced to achieve the 6D pose estimation, improving traditional methods by involving Convolutional Neural Networks (CNN). This review analyzed techniques belonging to different research fields and classified them into three main categories: Template-based methods, Feature-based methods, and Learning-Based methods. In recent years, the research mainly focused on Learning-based methods, which allow the training of a neural network tailored for a specific task. For this reason, most of the analyzed methods belong to this category, and they have been in turn classified into three sub-categories: Bounding box prediction and Perspective-n-Point (PnP) algorithm-based methods, Classification-based methods, and Regression-based methods. This review aims to provide a general overview of the latest 6D pose recovery methods to underline the pros and cons and highlight the best-performing techniques for each group. The main goal is to supply the readers with helpful guidelines for the implementation of performing applications even under challenging circumstances such as auto-occlusions, symmetries, occlusions between multiple objects, and bad lighting conditions.Scheda breveScheda completaScheda completa (DC) 2023 MULTIMEDIA TOOLS AND APPLICATIONS Computer vision6D position estimationDeep learningRGB Input 01.1 Articolo in RivistaFile in questo prodotto:FileDimensioneFormato s11042-022-14213-z.pdfAccesso riservato
Dimensione3.25 MBFormatoAdobe PDF Visualizza/Apri3.25 MBAdobe PDF Visualizza/ApriI documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1245221 Citazioni ND237 social impact Conferma cancellazioneSei sicuro che questo prodotto debba essere cancellato?
simulazione ASNIl report seguente simula gli indicatori relativi alla propria produzione scientifica in relazione alle soglie ASN 2023-2025 del proprio SC/SSD. Si ricorda che il superamento dei valori soglia (almeno 2 su 3) 猫 requisito necessario ma non sufficiente al conseguimento dell'abilitazione.La simulazione si basa sui dati IRIS e sugli indicatori bibliometrici alla data indicata e non tiene conto di eventuali periodi di congedo obbligatorio, che in sede di domanda ASN danno diritto a incrementi percentuali dei valori. La simulazione pu貌 differire dall'esito di un鈥檈ventuale domanda ASN sia per errori di catalogazione e/o dati mancanti in IRIS, sia per la variabilit脿 dei dati bibliometrici nel tempo. Si consideri che Anvur calcola i valori degli indicatori all'ultima data utile per la presentazione delle domande.La presente simulazione 猫 stata realizzata sulla base delle regole riportate nel DM 598/2018 e allegata Tabella A. Cineca non si assume alcuna responsabilit脿 in merito all鈥檜so che il diretto interessato o terzi faranno della simulazione. Si specifica inoltre che la simulazione contiene calcoli effettuati con dati e algoritmi di pubblico dominio e deve quindi essere considerata come un mero ausilio al calcolo svolgibile manualmente o con strumenti equivalenti. Informazioni sui dati: vengono considerati tutti i prodotti in stato definitivo. Per i prodotti indicizzati wos/scopus, l鈥檃nno di riferimento e la tipologia sono quelli riportati in banca-dati. Per informazioni: catalogoricerca@polimi.it
ErroreErrore